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We consider polymers in whicM randomly selected pairs of monomers are restricted to be in contact.
Analytical arguments and numerical simulations show thatlaal (Gaussianchain ofN monomers remains
expandedas long asM <N, its mean squared end to end distance growing®asv/N. A possible collapse
transition (to a region of order unityis related to percolation in a one-dimensional model with long-ranged
connections. A directed version of the model is also solved exactly. Based on these results, we conjecture that
the typical size of aelf-avoidingpolymer is reduced by the links 8= (N/M)”. The number of links needed
to collapse a polymer in three dimensions thus scalds?aswvith ¢=0.43.[S1063-651%96)04009-3

PACS numbds): 36.20-r, 64.60—i, 87.15.By

I. INTRODUCTION contacting pairs of monomers is of the ordemd¥, while the
number of spatial configurations increases only exponen-

Polymers subject to both repulsive and attractive selftially with N. It is thus not possible to find a simple corre-
interactions may have different equilibrium states dependingpondence between the two random ensembles. GS suggest
on temperature. For example, a homogeneous self-avoidirigat a correlated selection of constrains is needed to generate
polymer with short-range attractions between its monomergppropriate spatial configurations.
undergoes a collapse transitih] from an expanded to a Recently, Bryngelson and ThirumaléBT) [10] consid-
compact state as the temperature is lowered througlp a “ered a related problem in which links arandomly estab-
point.” In the expanded state, the radius of gyratipoot-  lished between pairs of monomers on an ideal, non-self-
mean-squared sizeRy of the polymer scales as”, where interacting polymer. The unconstrained ideal chain is
N is the number of monomers, and(approximately 0.588 expanded wittRgxN'2 By comparing variational estimates
in d=3 dimensiong?2]) is the swelling exponent. The com- to the free energies of expanded and collapsed states, BT
pact state has a finite density, and hemee1/3. Upon col- ~argue that increasing the number @fncorrelatedl links
lapse, contacts in the polymépairs of monomers located causes the polymer to collapse into a state in whighis
adjacent to each other in the embedding spaoth increase  independent oN. In particular, they conclude that for a ge-
drastically, and change qualitatively. The description of suctneric set of constraints, in which the typical distanCémea-
changes constitutes another important characteristic of theured along the backboneetween linked monomers is of

collapse transition. the orderN, it suffices to have a negligible density of the
Statistics of such contacts is even more important in theonstraints ¢ 1/InN) for such a collapse to occur.
characterization of the equilibrium states ludterogeneous In this work we consider several models of polymers with

polymers[3] such as biomolecules. Dynamics of protein randomly linked monomers. An essential feature of all these
folding is also influenced by contacts between amino acidsnodels is that the links along the polymer are selected in an
(see, e.g.[4]). While in problems of this type the contacts uncorrelated fashion. Unlike the previous work of BT,
between monomers atemporarilygenerated in the process which concentrated on estimates of the free energy, we di-
of thermodynamic equilibrium, it is interesting to ask the rectly measure the spatial extent of the polymer. For ideal
inverse question of whether the configuration of a polymeichains, we derive exact lower bounds which prove that un-
can be described by specifyimgrmanentontacts between correlated links cannot cause the polymer to collapse. This is
its monomers. The issue of permanent contacts has also beeanfirmed by extensive numerical simulations. Based on
extensively addressed in the context of rubber elasticity anthese results, we conjecture that, quite generally, the pres-
the vulcanization proced$—8], where the typical situation ence ofM random links reduces the typical size of a swollen
is a polymer melt with permanent cross links between thegolymer to R=(N/M)”. For ideal chains, a collapsgo
polymers. R~0O(1)] occurs only when the number of links is of the
Gutin and ShakhnovictGS) [9] analyzed the problem of order of N. However, it should be easier to collapse self-
a single polymer chain in which pairs of monomers areavoiding chains to a compact globular state Wi N*3,
forced to remain adjacent to each other, i.e., are permanently The remainder of the paper is organized as follows. The
linked. They note that in order to establish a meaningfulsimplest model of arideal chainwith permanent links is
relation between the distribution of such contacting pairsjntroduced in Sec. Il. We show that calculation of the
and the behavior of real self-interacting polymers withoutsquared end to end distance is equivalent to determining the
permanent links, the choice of the ensemble of contacts musésistance of a related resistor network. This equivalence
be very nonrandom: The number of random selections oprovides a powerful numerical tool that is exploited in the
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, . . end distanca?=((ry—ry)?), or by the squared radius of
o—& —6 ‘o—6—0 gyration R which is the average off,=((r,—ry)?) over
0 1 2 3 45 6 7 8 9 all pairs of monomer$l,m}. We note that the fluctuations of
the polymer in each of thd perpendicular space directions
(a) is independent of the others. Thu$ is simply the sum of
d contributions which can be calculated separately by con-
23 sidering one-dimensional chains. Therefore, without loss of
4,7 generality we restrict ourselves tooae-dimensionaGauss-

G © - ]
0 1"5\2/" 8 0 ian chain.

It is convenient to recast the problem in terms of a resistor

network: Mathematically, calculation of® for a Gaussian
(b) polymer with constraints is identical to finding the resistance
of a chain built of elementary resistors with conductances

FIG. 1. (@ A schematic drawing of a chain with two linked *> In Wh'Ch the Pa'rs of S'te$kl(l)’|$(2)} are connected by
pairs; (1,5 and (4,7). The circles represent monomers, the solid Z€r0 resistance linkshorts. Thus, Fig. 1 may also represent
lines depict bonds between neighboring monomers, and the dashé® electrical circuit, where the dashed lines indicate the
lines connect pairs of monomers which are forced to remain irShorts. Thisexactcorrespondencgll] holds for any arbi-
contact.(b) The same chain as @), but with every pair of linked  trary Gaussian network: The dissipation on a latkis given
monomers depicted by a single circle. by kap(da— ¢p)2 Where k,, is the link conductance and

¢, is the potential on a node. This is analogous to the ap-
following sections. Section Il focuses on the case where th@ropriate elastic term in the Gaussian Hamiltonian. The re-
contacts are formed only between nearby monomers. Weistance between any two nodgsand k is calculated by
demonstrate that even a finite density of such contacts doesinimizing the overall dissipation under applied external
not lead to a collapsed state. Analogies to percolation in ongoltage. For a quadratic form this minimization is equivalent
dimension suggest that collapse requires contacts betweén calculating averages of¢q—¢k)2 with the Gaussian
far away points. Accordingly, in Sec. IV, we consider links weight built using this form. Therefore, our task is reduced
between any two randomly chosen points on the chain. Itio calculating the resistance of networks such as the one in
this limit, a rigorous lower bound indicates that a finite con-Fig. 1(b). In the remainder of the paper we shall use the
tact density is necessary to cause a collapse. Several featutesminology of the Gaussian polymer and of the resistor net-
of these models are shared by a simple directed polymer wittvork interchangeably.
randomly forced links to the origin. As discussed in Sec. V, Note thatk, which is the force constant for the Gaussian
this model has the advantage of being exactly solvable. Fuehain or the conductance of an elementary resistor, appears
ther discussions of the results, and their possible extension tanly as an overall prefactor (2) in calculations ofr? or

self-avoidingpolymers, appear in the conclusi¢@ec. V). resistance. Thus without loss of generality wessetl, mak-
ing these quantities dimensionless. Calculating the resistance
II. MODEL of a chain with a specified set of links is now accomplished

using elementary methods: The configuration is first recast in
Following BT, we use a discrete Gaussian chain ofthe form of a simple electrical network, as in the process
N-+1 monomers, subject to a Hamiltonian leading from Fig. 1a) to Fig. 1(b). At this point each resistor
N is assigned a unit resistance. Pairs of resistors which are in
2 (F-— F )2 1) series or parallel_are replaced by effective resistors. Repeated
e AL application of this process leads to a network of not more
thanM nodes connected by effective resist¢For low den-

to describe the ideal polymer. Hergis the position of the ~Sities of shorts, the number of nodes is much less tdan
ith monomer in the d-dimensional embedding space, For example, reduction by series and resistor rules is suffi-
B=1/(kgT), and « is the inverse of the mean-squared dis-¢ient to completely eliminate all internal nodes in Figb)1]
tance between adjacent monomékaihn length. We next ~ Finally, the resistance of the reduced network is calculated
selectM pairs of monomers{k(l) k(2)} for j=1,2 M by solving a system of linear equations. The number of un-
J L ] 1 LR | . .

and constrain each pair to remain in contact. The statisticdf?oWns(and equationsis of order of (or smaller than M,
weight of the configurations is now given by and thus much smaller thad. Therefore, for eactN and

M, we could easily average our numerical results over large

H_dK
PR=7

R M R R numbers(up to 1600 of configurations with randomly dis-
P[{r}]cexp A [ 5(d)(rk}1>—rk1(2)). (2)  tributed links.
j=1
Figure ¥a) depicts schematically a simple case of such a IIl. NEARBY LINKS

polymer, with dashed lines connecting the linked monomers.

The same chain is redrawn in Figblin such a way that the We start by considering links that join monomers that are
paired monomers are placed at the same point in space. closeby along the chain. As a simple example consider a
The spatial extent of the polymer can be characterized byery long chain N>1) with M contact pairs scattered ran-

the thermal averagéwith weight P) of the squared end to domly along the chain: The positid(fl) of the first mono-
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Gaussian chain can be related to the presence of an infinite
cluster of shorts. In the corresponding percolation problem,
long-range shorts are added to a one-dimensional system
[12] in an uncorrelated fashion. The results of this section
were obtained for the simple case where the shorts connect
points at a fixed distancé. However, the conclusions can be
generalized to the case whehis randomly distributed with

a probabilityp(/).

An important characteristic of long-range percolation is
the coveragee=3,_,"/p(/). As long asc is finite, the
shorts do not form an infinite clustgt2]. The resistancéor
r?) is then proportional tdN, with a lower bound ok °N.

. Power-law distributiongp(/)~B//* (for /—) are fre-
o Lo Lo b quently used to describe long-range percolation. &2
0 0.5 1 1.5 2 2.5 there is a finitec, leading to the situation described above.
c Fora<1, the sum=3X,_,"p(/) diverges, i.e., the number
) _ ) of contacts per monomer is infinite. In this case, an infinite

FIG. 2. Normalized resistance, of, of a chain ofN=2560  cjyster of shorts always exists, although the situation does
monomers, for 7I|nks of .flxed Iengths’/=8_ (triangles, /=32 not correspond to a realistc physical model, since
(squarel and /=128 (circles as a function of the coverage \ /N .o A somewhat more realistic situation occurs for
E:S;gllt/e;lt\l. The solid line depicts the lower bound on resnstance1<a<2, where it can be showfi3] that for n<1/2 no

infinite cluster is formed. Fon>1/2, depending on the de-
tails of p(/) (e.g., the value of the constaB), percolation
mer of thejth pair is chosen with uniform probability any- may or may not occuf14]. This again corresponds to
where along the chain, while the second member of the paig ~N.
is located atkk{”=k{"+/, i.e., the distances between any
two members of a paifmeasured along the backbgreze
fixed at/. (We assume that’<N.) IV. DISTANT LINKS

For the corresponding electrical circuit, it is obvious that
the total resistance is proportional kb (because the shorts
are local. The problem is characterized by the density
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The distributions witha<<2 cannot be directly used to
describe the behavior of fanite polymer, because the diver-
_ “ Map /S . gence ofc implies the presence of strong finite size effects.
n=M/N, and “coverage”c=n/ of the links. As long as We shall, therefore, consider the extreme case of a broad

the coverage is smallc&l), the different pairs do not .~ > ' ) . .
bridge over overlapping strands of the chain; the total resisc_hstnbuﬂon of # by assuming that for finitd\ the typical

tance is obtained simply by removing the part of the chain/_iS of order(l(;fN. Tr(12e) simplegt ppssible situation .is ob-
that is shortened ag=N—M/=(1—c)N~e °N. tained wherk;”’ andkj’ of the jth link are selected inde-

Whenc is comparable to or larger than unity, the resis-Pendently and uniformly among all monomers. We are inter-

tance of the chain drops significantly. However, it can still be€Sted in calculating? for such a chain witiM links.

bounded from below by the total resistance of the resistors, W& immediately notice a simple scaling argument: Con-

that are not bridged by the shorts. An “unbridged resistor”s'diar a chain of lengthN with M links located at

is such that there are no shorts which begin to its left and ent” ,k{>’}, and compare it with another chain oN mono-

to its right. Since the probability of such a condition for eachmers with links at{xk{" Ak{®}. Clearly, r? of the latter

resistor is (+n)”, a lower bound on the resistance is givensequence is exactly times larger than the formefwe con-

by (1—n)”N. The continuum limit(where the discreteness sider the limitN>1 where the discreteness effects can be

of the chain can be disregardeid reached whem<1 and disregarded.The corresponding probabilities of finding such

1</<N. In this limit the bound becomes °N. (Note that randomly linked chains are identicdMore precisely, the

c does not have to be smallThis lower bound shows that Probability for a link in the first ensemble to be located be-

the chain is not collapsed for any coverage, it8+N, al-  tweenx andx+dx is equal to the probability for a link in the

though the prefactor may be very small when the links aréecond ensemble to be located betwaenand \ (x+dx).]

dense. From the relatiorr§ ,n=\rg v it immediately follows that
The results of Monte Carlo simulations on this model arer?=f(M)N. To obtain a collapsed state of the chain we must

depicted in Fig. 2. In the continuum limit, the resistance ishavef(M)~1/N. We shall show that such a small value of

expected to have the forg(c)N, whereg is some unknown f is reached only wheN~ M, when essentially every mono-

function. The collapse of the data for different values ofmer is paired with another.

/=8, 32, and 128 confirms this expectation. There are slight We first obtain a lower bound for? in this case. The

systematic deviations fof =8 which are due to the discrete- M shorts break the chain backbone intM2 1 segments.

ness of the chain. The lower boundef® is indicated by the The resistance of the chain is certainly larger than that of the

solid line in this figure, and is quite a good estimate for smalltwo extremal segments at its two ends. In Fig. 1, this corre-

values of coverage. sponds to the distance between 0 and 1, plus the distance
There are close analogies between random resistor ndbetween 7 and 9. In the limit of largl, each segment is

works and percolation. In particular, the collapse of theindependently taken from an exponential probability distri-
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dinate of theith monomer. TheM randomly chosen mono-

"1 L T T T LI L T TT
I ‘ ! a mers{k;}, for j=1,2,... ,M are linked to the origin, result-
C ] ing in the statistical weight
_2 — —]
i ] M
~ .l ] PI{ri}l=exp P TT 6 (ry). 3)
z 3 7] j=1 )
N ]
\;3 4 - B The constraints break the chain inkb+ 1 independent
— - 1 segments of lengthgs,}, with a=1,2,... ,M+1. This
i . model is easily solvable in the limit of largd, where it is
-5 - ] sufficient to apply the constrai® s, =N only on average
L ] Subject to this constraint, the joint probability of segment
. C L [I lengths is maximized for a product of independent exponen-
1 5 3 4 5 6 tial distributions
In(M
n(M) LS p( M+1 "
S)= exp — s|.
FIG. 3. Logarithmic plot of the scaled resistanc®N, as a P N N

function of number of linksM. Each point represents an average

over 1600 randomly linked chains. The slope of the solid line isFor each segment, we thus hai&)~m!(N/M)™.

-1 The end to end distance in this case is given simply by the
contribution of the two end segments, ad)=2N/M. We

bution (see Sec. Ywith mean sizeN/(2M +1). The resis- can also calculate an average of the squared distance from
tances of the two end segments thus add up tahe origin

2N/(2M +1)~N/M. Therefore, for largeM we have
f(M)=r2/N>1/M. Note that this bound ensures the absence 1 N

of a collapsed state for vanishing dengify N, contradicting R?= NE r2=—> r(s,)? (5)
a prediction of Ref[10].

We were unable to derive a satisfactory upper bound for ]
f(M). It can be crudely argued that it is bounded from aboveVhere we have taken advantage of the independence of seg-
by (InM)/M: The resistance of the chain should be smallefMents. It is easy to show that each segment contributes
than that of a single path going from one end of the chain td (S)°=s/6, resulting in
the other, either by way of the links or through the shorts.

Since(for smallM) the number of different.-step pathgon (R?)= }(ﬂ)
the space of BI+1 segmentsbeginning from monomer 0 3\M /)’
increases exponentially with, the probability that at least

one of the paths reaches the pdihbecomes of the order of (We note thaR? does not coincide withR; but differs from
unity whenL~InM. The resistance of the path which hasit only by a term of ordeiN/M?, which becomes negligible
reached the end point can now be estimated by multiplyingor large M.) We can also consider cases where the chains
the resistance of a typical segment, approximakelf2M),  are nonideal, such as directed polymers in a random medium
by the number of segments;InM. Therefore, this overesti- [15]. In such cases, each segment wanders away from the
mate of the resistance is approximat&linM/M. origin by an amouns” with »>1/2. The overall radii of the

We confirmed numerically the scaling form o for sev-  randomly linked polymer are then characterized by the scale
eral values oN. Figure 3 depictgon a logarithmic scajethe  (N/M)”.
scaled resistancé=r?/N, as a function oM, for a single
value of N=2560. Every point on this figure represents an
average over 1600 configurations of random links. The nu-
merical results gradually converge to a slope—df, as de- Most of the results described so far apply to ideal chains.
picted by the solid line. A least squares fitetth points of the  However, we may argue that some of the conclusions are
figure produces a slope of 0.97, and the curve cannot bexpected to hold for self-avoiding polymers. Consider, for
fitted as IM/M. In fact, we conclude thaf(M)~1.5/M, example, the lower bound obtained in Sec. IV. Even for a
with a prefactor that is surprisingly close to the value of 1,self-avoiding walk, it is reasonable to expect that the overall

(6)

VI. DISCUSSIONS

which appears in our simple lower bound. polymer size is larger than the contributions of its two end
segments. Although the interactions among the segments
V. DIRECTED POLYMERS make an exact argument difficult, it is probably reasonable to

assume that each end segment has a characteristic size pro-
In this section we introduce a simpler model in which aportional tos” with s~N/M, wherev is the swelling expo-
random set of monomers is linked to the origin. Alterna-npent. The numerical results of Sec. IV, and the analytical
tively, the model describes directed polymerin d+1 di-  forms of Sec. V, suggest that this bound is generally satis-
mensions, in which certain points are linked to a line at thefied. We thus conjecture that the typical size of a self-
origin. In the latter example;, denotes the transverse coor- avoiding chain withM random links is given by
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v spective of protein folding studig®], the resulting state is
: (7)  most likely a compact globule; a liquidlike state with exten-
sive entropy. Additional links would then be needed to
Assuming the validity of the above conjecture, we can askreeze this compact object into a unique configuration. The
how many links are necessary to Compactify a chain. ArfadiUS of gyration is then not a gOOd discriminator of the
ideal chain in its compact state is localized to a region of sizétate of the macromolecule.
R~O(1). This is achieved only with an extensive number of At the completion of this work, we became aware of a
links McN. For a self-avoiding chain, however, the compactreécent paper by Solf and Vilg[d.6]. Their starting point is a
state has finite density, and herRe N'd. Comparing with ~ randomly cross-linked Gaussian network, motivated by the
Eq. (7) suggests that such compactification is achieved if thd>¢am and Edwardg5] model of polymeric gels. Although
number of links scales as they consider more general networks, they also perform
simulations on the model of Sec. IV. They measure the ra-
dius of gyration, finding?gwo.ZG\I/M, consistent with our
results. Interestingly, the ratio Gig to r? (calculated in our

papej is approximately 1/6, as in the case of an uncon-
For a self-avoiding polymer inl=3, ¢=~0.43, and¢=1/3  strained ideal chain.

in d=2. (While this certainly gives the minimum number of
bonds necessary for collapse, its sufficiency remains to be
established.

The above result suggests that it is much easier to com- This work was supported by the Israel Science Founda-
pactify a self-avoiding polymer. However, it says very little tion Grant No. 246/96, by the NSF through Grant No. DMR-
about the final structure of the compact state. From the pei94-00334, and the PYI prografivi.K.).
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