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We consider polymers in whichM randomly selected pairs of monomers are restricted to be in contact.
Analytical arguments and numerical simulations show that anideal ~Gaussian! chain ofN monomers remains
expandedas long asM!N, its mean squared end to end distance growing asr 2}M /N. A possible collapse
transition~to a region of order unity! is related to percolation in a one-dimensional model with long-ranged
connections. A directed version of the model is also solved exactly. Based on these results, we conjecture that
the typical size of aself-avoidingpolymer is reduced by the links toR*(N/M )n. The number of links needed
to collapse a polymer in three dimensions thus scales asNf, with f*0.43. @S1063-651X~96!04009-3#

PACS number~s!: 36.20.2r, 64.60.2i, 87.15.By

I. INTRODUCTION

Polymers subject to both repulsive and attractive self-
interactions may have different equilibrium states depending
on temperature. For example, a homogeneous self-avoiding
polymer with short-range attractions between its monomers
undergoes a collapse transition@1# from an expanded to a
compact state as the temperature is lowered through a ‘‘u
point.’’ In the expanded state, the radius of gyration~root-
mean-squared size! Rg of the polymer scales asNn, where
N is the number of monomers, andn ~approximately 0.588
in d53 dimensions@2#! is the swelling exponent. The com-
pact state has a finite density, and hencen51/3. Upon col-
lapse, contacts in the polymer~pairs of monomers located
adjacent to each other in the embedding space! both increase
drastically, and change qualitatively. The description of such
changes constitutes another important characteristic of the
collapse transition.

Statistics of such contacts is even more important in the
characterization of the equilibrium states ofheterogeneous
polymers @3# such as biomolecules. Dynamics of protein
folding is also influenced by contacts between amino acids
~see, e.g.,@4#!. While in problems of this type the contacts
between monomers aretemporarilygenerated in the process
of thermodynamic equilibrium, it is interesting to ask the
inverse question of whether the configuration of a polymer
can be described by specifyingpermanentcontacts between
its monomers. The issue of permanent contacts has also been
extensively addressed in the context of rubber elasticity and
the vulcanization process@5–8#, where the typical situation
is a polymer melt with permanent cross links between the
polymers.

Gutin and Shakhnovich~GS! @9# analyzed the problem of
a single polymer chain in which pairs of monomers are
forced to remain adjacent to each other, i.e., are permanently
linked. They note that in order to establish a meaningful
relation between the distribution of such contacting pairs,
and the behavior of real self-interacting polymers without
permanent links, the choice of the ensemble of contacts must
be very nonrandom: The number of random selections of

contacting pairs of monomers is of the order ofNN, while the
number of spatial configurations increases only exponen-
tially with N. It is thus not possible to find a simple corre-
spondence between the two random ensembles. GS suggest
that a correlated selection of constrains is needed to generate
appropriate spatial configurations.

Recently, Bryngelson and Thirumalai~BT! @10# consid-
ered a related problem in which links arerandomlyestab-
lished between pairs of monomers on an ideal~i.e., non-self-
interacting! polymer. The unconstrained ideal chain is
expanded withRg}N

1/2. By comparing variational estimates
to the free energies of expanded and collapsed states, BT
argue that increasing the number of~uncorrelated! links
causes the polymer to collapse into a state in whichRg is
independent ofN. In particular, they conclude that for a ge-
neric set of constraints, in which the typical distancel ~mea-
sured along the backbone! between linked monomers is of
the orderN, it suffices to have a negligible density of the
constraints (;1/lnN) for such a collapse to occur.

In this work we consider several models of polymers with
randomly linked monomers. An essential feature of all these
models is that the links along the polymer are selected in an
uncorrelated fashion. Unlike the previous work of BT,
which concentrated on estimates of the free energy, we di-
rectly measure the spatial extent of the polymer. For ideal
chains, we derive exact lower bounds which prove that un-
correlated links cannot cause the polymer to collapse. This is
confirmed by extensive numerical simulations. Based on
these results, we conjecture that, quite generally, the pres-
ence ofM random links reduces the typical size of a swollen
polymer to R*(N/M )n. For ideal chains, a collapse@to
R;O(1)# occurs only when the number of links is of the
order ofN. However, it should be easier to collapse self-
avoiding chains to a compact globular state withR}N1/3.

The remainder of the paper is organized as follows. The
simplest model of anideal chainwith permanent links is
introduced in Sec. II. We show that calculation of the
squared end to end distance is equivalent to determining the
resistance of a related resistor network. This equivalence
provides a powerful numerical tool that is exploited in the

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5263~5!/$10.00 5263 © 1996 The American Physical Society



following sections. Section III focuses on the case where the
contacts are formed only between nearby monomers. We
demonstrate that even a finite density of such contacts does
not lead to a collapsed state. Analogies to percolation in one
dimension suggest that collapse requires contacts between
far away points. Accordingly, in Sec. IV, we consider links
between any two randomly chosen points on the chain. In
this limit, a rigorous lower bound indicates that a finite con-
tact density is necessary to cause a collapse. Several features
of these models are shared by a simple directed polymer with
randomly forced links to the origin. As discussed in Sec. V,
this model has the advantage of being exactly solvable. Fur-
ther discussions of the results, and their possible extension to
self-avoidingpolymers, appear in the conclusion~Sec. VI!.

II. MODEL

Following BT, we use a discrete Gaussian chain of
N11 monomers, subject to a Hamiltonian

bH5
dk

2 (
i51

N

~rW i2rW i21!
2, ~1!

to describe the ideal polymer. HererW i is the position of the
i th monomer in the d-dimensional embedding space,
b51/(kBT), andk is the inverse of the mean-squared dis-
tance between adjacent monomers~Kuhn length!. We next
selectM pairs of monomers$kj

(1) ,kj
(2)% for j51,2, . . . ,M

and constrain each pair to remain in contact. The statistical
weight of the configurations is now given by

P@$rW i%#}exp2bH)
j51

M

d~d!~rWk
j
~1!2rWk

j
~2!!. ~2!

Figure 1~a! depicts schematically a simple case of such a
polymer, with dashed lines connecting the linked monomers.
The same chain is redrawn in Fig. 1~b! in such a way that the
paired monomers are placed at the same point in space.

The spatial extent of the polymer can be characterized by
the thermal average~with weight P) of the squared end to

end distancer 2[^(rW02rWN)
2&, or by the squared radius of

gyrationRg
2 which is the average ofr lm

2 [^(rW l2rWm)
2& over

all pairs of monomers$ l ,m%. We note that the fluctuations of
the polymer in each of thed perpendicular space directions
is independent of the others. Thusr 2 is simply the sum of
d contributions which can be calculated separately by con-
sidering one-dimensional chains. Therefore, without loss of
generality we restrict ourselves to aone-dimensionalGauss-
ian chain.

It is convenient to recast the problem in terms of a resistor
network: Mathematically, calculation ofr 2 for a Gaussian
polymer with constraints is identical to finding the resistance
of a chain built of elementary resistors with conductances
k, in which the pairs of sites$kj

(1) ,kj
(2)% are connected by

zero resistance links~shorts!. Thus, Fig. 1 may also represent
an electrical circuit, where the dashed lines indicate the
shorts. Thisexact correspondence@11# holds for any arbi-
trary Gaussian network: The dissipation on a linkab is given
by kab(fa2fb)

2, wherekab is the link conductance and
fa is the potential on a node. This is analogous to the ap-
propriate elastic term in the Gaussian Hamiltonian. The re-
sistance between any two nodesj and k is calculated by
minimizing the overall dissipation under applied external
voltage. For a quadratic form this minimization is equivalent
to calculating averages of (f j2fk)

2 with the Gaussian
weight built using this form. Therefore, our task is reduced
to calculating the resistance of networks such as the one in
Fig. 1~b!. In the remainder of the paper we shall use the
terminology of the Gaussian polymer and of the resistor net-
work interchangeably.

Note thatk, which is the force constant for the Gaussian
chain or the conductance of an elementary resistor, appears
only as an overall prefactor (1/k) in calculations ofr 2 or
resistance. Thus without loss of generality we setk51, mak-
ing these quantities dimensionless. Calculating the resistance
of a chain with a specified set of links is now accomplished
using elementary methods: The configuration is first recast in
the form of a simple electrical network, as in the process
leading from Fig. 1~a! to Fig. 1~b!. At this point each resistor
is assigned a unit resistance. Pairs of resistors which are in
series or parallel are replaced by effective resistors. Repeated
application of this process leads to a network of not more
thanM nodes connected by effective resistors.@For low den-
sities of shorts, the number of nodes is much less thanM .
For example, reduction by series and resistor rules is suffi-
cient to completely eliminate all internal nodes in Fig. 1~b!.#
Finally, the resistance of the reduced network is calculated
by solving a system of linear equations. The number of un-
knowns~and equations! is of order of~or smaller than! M ,
and thus much smaller thanN. Therefore, for eachN and
M , we could easily average our numerical results over large
numbers~up to 1600! of configurations with randomly dis-
tributed links.

III. NEARBY LINKS

We start by considering links that join monomers that are
closeby along the chain. As a simple example consider a
very long chain (N@1) with M contact pairs scattered ran-
domly along the chain: The positionkj

(1) of the first mono-

FIG. 1. ~a! A schematic drawing of a chain with two linked
pairs; ~1,5! and ~4,7!. The circles represent monomers, the solid
lines depict bonds between neighboring monomers, and the dashed
lines connect pairs of monomers which are forced to remain in
contact.~b! The same chain as in~a!, but with every pair of linked
monomers depicted by a single circle.
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mer of the j th pair is chosen with uniform probability any-
where along the chain, while the second member of the pair
is located atkj

(2)5kj
(1)1l , i.e., the distances between any

two members of a pair~measured along the backbone! are
fixed at l . ~We assume thatl !N.!

For the corresponding electrical circuit, it is obvious that
the total resistance is proportional toN ~because the shorts
are local!. The problem is characterized by the density
n5M /N, and ‘‘coverage’’c[nl of the links. As long as
the coverage is small (c!1), the different pairs do not
bridge over overlapping strands of the chain; the total resis-
tance is obtained simply by removing the part of the chain
that is shortened asr 25N2M l 5(12c)N'e2cN.

When c is comparable to or larger than unity, the resis-
tance of the chain drops significantly. However, it can still be
bounded from below by the total resistance of the resistors
that are not bridged by the shorts. An ‘‘unbridged resistor’’
is such that there are no shorts which begin to its left and end
to its right. Since the probability of such a condition for each
resistor is (12n) l , a lower bound on the resistance is given
by (12n) l N. The continuum limit~where the discreteness
of the chain can be disregarded! is reached whenn!1 and
1!l !N. In this limit the bound becomese2cN. ~Note that
c does not have to be small.! This lower bound shows that
the chain is not collapsed for any coverage, i.e.,r 2;N, al-
though the prefactor may be very small when the links are
dense.

The results of Monte Carlo simulations on this model are
depicted in Fig. 2. In the continuum limit, the resistance is
expected to have the formg(c)N, whereg is some unknown
function. The collapse of the data for different values of
l 58, 32, and 128 confirms this expectation. There are slight
systematic deviations forl 58 which are due to the discrete-
ness of the chain. The lower bound ofe2c is indicated by the
solid line in this figure, and is quite a good estimate for small
values of coverage.

There are close analogies between random resistor net-
works and percolation. In particular, the collapse of the

Gaussian chain can be related to the presence of an infinite
cluster of shorts. In the corresponding percolation problem,
long-range shorts are added to a one-dimensional system
@12# in an uncorrelated fashion. The results of this section
were obtained for the simple case where the shorts connect
points at a fixed distancel . However, the conclusions can be
generalized to the case whenl is randomly distributed with
a probabilityp(l ).

An important characteristic of long-range percolation is
the coveragec[( l 51

`l p(l ). As long asc is finite, the
shorts do not form an infinite cluster@12#. The resistance~or
r 2) is then proportional toN, with a lower bound ofe2cN.
Power-law distributionsp(l )'B/l a ~for l →`) are fre-
quently used to describe long-range percolation. Fora.2
there is a finitec, leading to the situation described above.
Fora,1, the sumn[( l 51

`p(l ) diverges, i.e., the number
of contacts per monomer is infinite. In this case, an infinite
cluster of shorts always exists, although the situation does
not correspond to a realistic physical model, since
M /N→`. A somewhat more realistic situation occurs for
1,a,2, where it can be shown@13# that for n,1/2 no
infinite cluster is formed. Forn.1/2, depending on the de-
tails of p(l ) ~e.g., the value of the constantB), percolation
may or may not occur@14#. This again corresponds to
M'N.

IV. DISTANT LINKS

The distributions witha,2 cannot be directly used to
describe the behavior of afinite polymer, because the diver-
gence ofc implies the presence of strong finite size effects.
We shall, therefore, consider the extreme case of a broad
distribution of l by assuming that for finiteN the typical
l is of order ofN. The simplest possible situation is ob-
tained whenkj

(1) and kj
(2) of the j th link are selected inde-

pendently and uniformly among all monomers. We are inter-
ested in calculatingr 2 for such a chain withM links.

We immediately notice a simple scaling argument: Con-
sider a chain of lengthN with M links located at
$kj

(1) ,kj
(2)%, and compare it with another chain oflN mono-

mers with links at$lkj
(1) ,lkj

(2)%. Clearly, r 2 of the latter
sequence is exactlyl times larger than the former.~We con-
sider the limitN@1 where the discreteness effects can be
disregarded.! The corresponding probabilities of finding such
randomly linked chains are identical.@More precisely, the
probability for a link in the first ensemble to be located be-
tweenx andx1dx is equal to the probability for a link in the
second ensemble to be located betweenlx andl(x1dx).#
From the relationr M ,lN

2 5lr M ,N
2 it immediately follows that

r 25 f (M )N. To obtain a collapsed state of the chain we must
have f (M );1/N. We shall show that such a small value of
f is reached only whenN;M , when essentially every mono-
mer is paired with another.

We first obtain a lower bound forr 2 in this case. The
M shorts break the chain backbone into 2M11 segments.
The resistance of the chain is certainly larger than that of the
two extremal segments at its two ends. In Fig. 1, this corre-
sponds to the distance between 0 and 1, plus the distance
between 7 and 9. In the limit of largeM , each segment is
independently taken from an exponential probability distri-

FIG. 2. Normalized resistance, orr 2, of a chain ofN52560
monomers, for links of fixed lengthsl 58 ~triangles!, l 532
~squares!, and l 5128 ~circles! as a function of the coverage
c5M l /N. The solid line depicts the lower bound on resistance
~see text!.
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bution ~see Sec. V! with mean sizeN/(2M11). The resis-
tances of the two end segments thus add up to
2N/(2M11)'N/M . Therefore, for largeM we have
f (M )[r 2/N.1/M . Note that this bound ensures the absence
of a collapsed state for vanishing densityM /N, contradicting
a prediction of Ref.@10#.

We were unable to derive a satisfactory upper bound for
f (M ). It can be crudely argued that it is bounded from above
by (lnM)/M: The resistance of the chain should be smaller
than that of a single path going from one end of the chain to
the other, either by way of the links or through the shorts.
Since~for smallM ) the number of differentL-step paths~on
the space of 2M11 segments! beginning from monomer 0
increases exponentially withL, the probability that at least
one of the paths reaches the pointN becomes of the order of
unity whenL; lnM. The resistance of the path which has
reached the end point can now be estimated by multiplying
the resistance of a typical segment, approximatelyN/(2M ),
by the number of segments,; lnM. Therefore, this overesti-
mate of the resistance is approximatelyNlnM/M.

We confirmed numerically the scaling form ofr 2 for sev-
eral values ofN. Figure 3 depicts~on a logarithmic scale! the
scaled resistancef5r 2/N, as a function ofM , for a single
value ofN52560. Every point on this figure represents an
average over 1600 configurations of random links. The nu-
merical results gradually converge to a slope of21, as de-
picted by the solid line. A least squares fit toall points of the
figure produces a slope of 0.97, and the curve cannot be
fitted as lnM/M. In fact, we conclude thatf (M )'1.5/M ,
with a prefactor that is surprisingly close to the value of 1,
which appears in our simple lower bound.

V. DIRECTED POLYMERS

In this section we introduce a simpler model in which a
random set of monomers is linked to the origin. Alterna-
tively, the model describes adirected polymerin d11 di-
mensions, in which certain points are linked to a line at the
origin. In the latter example,rW i denotes the transverse coor-

dinate of thei th monomer. TheM randomly chosen mono-
mers$kj%, for j51,2, . . . ,M are linked to the origin, result-
ing in the statistical weight

P@$rW i%#}exp2bH)
j51

M

d~d!~rWkj !. ~3!

The constraints break the chain intoM11 independent
segments of lengths$sa%, with a51,2, . . . ,M11. This
model is easily solvable in the limit of largeM , where it is
sufficient to apply the constraint(asa5N only on average.
Subject to this constraint, the joint probability of segment
lengths is maximized for a product of independent exponen-
tial distributions

p~s!5
M11

N
expS 2

M11

N
sD . ~4!

For each segment, we thus have^sm&'m!(N/M )m.
The end to end distance in this case is given simply by the

contribution of the two end segments, and^r 2&52N/M . We
can also calculate an average of the squared distance from
the origin

R2[
1

N(
i50

N

r i
25

1

N (
a51

M11

r ~sa!2, ~5!

where we have taken advantage of the independence of seg-
ments. It is easy to show that each segment contributes
r (s)25s2/6, resulting in

^R2&5
1

3 S NM D . ~6!

~We note thatR2 does not coincide withRg
2 but differs from

it only by a term of orderN/M2, which becomes negligible
for largeM .! We can also consider cases where the chains
are nonideal, such as directed polymers in a random medium
@15#. In such cases, each segment wanders away from the
origin by an amountsn with n.1/2. The overall radii of the
randomly linked polymer are then characterized by the scale
(N/M )n.

VI. DISCUSSIONS

Most of the results described so far apply to ideal chains.
However, we may argue that some of the conclusions are
expected to hold for self-avoiding polymers. Consider, for
example, the lower bound obtained in Sec. IV. Even for a
self-avoiding walk, it is reasonable to expect that the overall
polymer size is larger than the contributions of its two end
segments. Although the interactions among the segments
make an exact argument difficult, it is probably reasonable to
assume that each end segment has a characteristic size pro-
portional tosn with s'N/M , wheren is the swelling expo-
nent. The numerical results of Sec. IV, and the analytical
forms of Sec. V, suggest that this bound is generally satis-
fied. We thus conjecture that the typical size of a self-
avoiding chain withM random links is given by

FIG. 3. Logarithmic plot of the scaled resistancer 2/N, as a
function of number of linksM . Each point represents an average
over 1600 randomly linked chains. The slope of the solid line is
21.
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^R&}S NM D n

. ~7!

Assuming the validity of the above conjecture, we can ask
how many links are necessary to compactify a chain. An
ideal chain in its compact state is localized to a region of size
R;O(1). This is achieved only with an extensive number of
linksM}N. For a self-avoiding chain, however, the compact
state has finite density, and henceR}N1/d. Comparing with
Eq. ~7! suggests that such compactification is achieved if the
number of links scales as

M}Nf with f512
1

dn
. ~8!

For a self-avoiding polymer ind53, f'0.43, andf51/3
in d52. ~While this certainly gives the minimum number of
bonds necessary for collapse, its sufficiency remains to be
established.!

The above result suggests that it is much easier to com-
pactify a self-avoiding polymer. However, it says very little
about the final structure of the compact state. From the per-

spective of protein folding studies@9#, the resulting state is
most likely a compact globule; a liquidlike state with exten-
sive entropy. Additional links would then be needed to
freeze this compact object into a unique configuration. The
radius of gyration is then not a good discriminator of the
state of the macromolecule.

At the completion of this work, we became aware of a
recent paper by Solf and Vilgis@16#. Their starting point is a
randomly cross-linked Gaussian network, motivated by the
Deam and Edwards@5# model of polymeric gels. Although
they consider more general networks, they also perform
simulations on the model of Sec. IV. They measure the ra-
dius of gyration, findingRg

2'0.26N/M , consistent with our
results. Interestingly, the ratio ofRg

2 to r 2 ~calculated in our
paper! is approximately 1/6, as in the case of an uncon-
strained ideal chain.
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